Search results for " vegetation"

showing 10 items of 435 documents

Global trends in NDVI-derived parameters obtained from GIMMS data

2011

The Normalized Difference Vegetation Index (NDVI) has been proven to be useful to assess vegetation changes around the world, in spite of limitations such as sensitivity to cloud or snow contamination. In order to map vegetation changes at global scale, this study uses NDVI time series provided by the GIMMS (Global Inventory Modeling and Mapping Studies) group, which were fitted annually to a double logistic function. This fitting procedure allowed for retrieval of NDVI-derived parameters which were tested for trends using Mann-Kendall statistics. These trends were validated by comparison at 73 ground control points documented as change hotspots. The obtained trends for NDVI-derived paramet…

010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyVegetation15. Life on landSnow01 natural sciencesField (geography)Normalized Difference Vegetation Index13. Climate actionGeneral Earth and Planetary SciencesEnvironmental scienceSensitivity (control systems)Logistic functionScale (map)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInternational Journal of Remote Sensing
researchProduct

Analysis of directional effects on atmospheric correction

2013

Abstract Atmospheric correction in the Visible and Near Infrared (VNIR) spectral range of remotely sensed data is significantly simplified if we assume a Lambertian target. However, natural surfaces are anisotropic. Therefore, this assumption will introduce an error in surface directional reflectance estimates and consequently in the estimation of vegetation indexes such as the Normalized Difference Vegetation Index (NDVI) and the surface albedo retrieval. In this paper we evaluate the influence of directional effects on the atmospheric correction and its impact in the NDVI and albedo estimation. First, we derived the NDVI and surface albedo from data corrected assuming a Lambertian surface…

010504 meteorology & atmospheric sciences0211 other engineering and technologiesAtmospheric correctionSoil ScienceGeology02 engineering and technologyVegetation15. Life on landAlbedo01 natural sciencesNormalized Difference Vegetation IndexVNIRAERONET13. Climate actionEnvironmental scienceClimate modelBidirectional reflectance distribution functionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Vegetation vulnerability to drought in Spain

2014

[EN] Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegeta…

010504 meteorology & atmospheric sciencesClimateGeography Planning and Development0211 other engineering and technologiesSPIGrowing seasonlcsh:G1-92202 engineering and technology01 natural sciencesSequíaVegetation coverTropical vegetationEarth and Planetary Sciences (miscellaneous)medicineTeledetecciónPrecipitation021101 geological & geomatics engineering0105 earth and related environmental sciencesSequíasMoistureDroughtÍndices meteorológicos de sequíaVegetaciónVegetation cover15. Life on landRemote sensingVegetation dynamicsAridGeography13. Climate actionClimatologyClimamedicine.symptomVegetation (pathology)lcsh:Geography (General)
researchProduct

Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe

2021

Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…

010504 meteorology & atmospheric sciencesDatabaseCorrelation coefficient0208 environmental biotechnologySoil ScienceGeology02 engineering and technologycomputer.software_genre01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringRandom forestSupport vector machineAutoregressive modelPrincipal component analysisPotential evaporationComputers in Earth Sciencescomputer0105 earth and related environmental sciencesMathematicsInterpolationRemote sensingRemote Sensing of Environment
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data

2012

River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…

010504 meteorology & atmospheric sciencesFloodplainWater flowpointable sensors; CHRIS/PROBA; leaf area index (LAI); inversion; radiative transfer (RT) model; FLIGHT; river floodplain ecosystem; vegetation density; hydraulic roughnessleaf area index (LAI)0211 other engineering and technologiesClimate change02 engineering and technologyCHRIS/PROBA01 natural sciencesforestinversionLaboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote SensingLeaf area indexcoverlcsh:ScienceZenithriver floodplain ecosystem021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensinggeographychris-proba datahyperspectral brdf datageography.geographical_feature_categoryFLIGHTFlood mythrhine basinradiative-transfer modelHyperspectral imagingEnhanced vegetation index15. Life on landpointable sensorsPE&RCradiative transfer (RT) modelsugar-beetclimate-changeGeneral Earth and Planetary SciencesEnvironmental sciencehydraulic roughnesslcsh:Qflow resistanceleaf-area indexvegetation densityRemote Sensing
researchProduct

Estudio de bofedales en los Andes ecuatorianos a través de la comparación de imágenes Landsat-8 y Sentinel-2

2019

[EN] The objective of the present study was to compare the Landsat-8 and Sentinel-2 images to calculate the wetland´s extension, distribution and degree of conservation, in Reserva de Producción de Fauna Chinborazo (RPFCH) protected area located in the Andean region of Ecuador. This process was developed with in situ work in 16 wetlands, distributed in different conservation levels. The Landsat-8 and Sentinel-2 images were processed through a radiometric calibration (restoration of lost lines or píxels and correction of the stripe of the image) and an atmospheric correction (conversion of the digital levels to radiance values), to later calculate the Vegetation spectral indexes: NDVI, SAVI …

010504 meteorology & atmospheric sciencesGeography Planning and Development0211 other engineering and technologiesRed edgeWetland02 engineering and technology01 natural sciencesNormalized Difference Vegetation IndexLandsat-8Earth and Planetary Sciences (miscellaneous)Red EdgeImage resolutionBofedal021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsgeographyRandom Forestgeography.geographical_feature_categoryPixelAtmospheric correctionForestryVegetationRadianceSentinel-2Revista de Teledetección
researchProduct

Mapping land surface emissivity from NDVI: Application to European, African, and South American areas

1996

Thermal infrared emissivity is an important parameter both for surface characterization and for atmospheric correction methods. Mapping the emissivity from satellite data is therefore a very important question to solve. The main problem is the coupling of the temperature and emissivity effects in the thermal radiances. Several methods have been developed to obtain surface emissivity from satellite data. In this way we propose a theoretical model that relates the emissivity to the NDVI (normalized difference vegetation index) of a given surface and explains the experimental behavior observed by van de Griend and Owe. We can use it to obtain the emissivity in any thermal channel, but in this …

010504 meteorology & atmospheric sciencesMathematical model0211 other engineering and technologiesAtmospheric correctionSoil ScienceGeology02 engineering and technologySurface finish01 natural sciencesNormalized Difference Vegetation Index13. Climate actionMiddle latitudesThermalEmissivityEnvironmental scienceSatelliteComputers in Earth SciencesAstrophysics::Galaxy Astrophysics021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrie…

2021

In forest landscapes affected by fire, the estimation of fractional vegetation cover (FVC) from remote sensing data using radiative transfer models (RTMs) enables to evaluate the ecological impact of such disturbance across plant communities at different spatio-temporal scales. Even though, when landscapes are highly heterogeneous, the fine-scale ground spatial variation might not be properly captured if FVC products are provided at moderate or coarse spatial scales, as typical of most of operational Earth observing satellite missions. The objective of this study was to evaluate the potential of a RTM inversion approach for estimating FVC from satellite reflectance data at high spatial reso…

010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologySoil Science02 engineering and technology01 natural sciencesArticleWorldView-3Radiative transferComputers in Earth SciencesImage resolution0105 earth and related environmental sciencesRemote sensingFractional vegetation coverForest fireGeologyInversion (meteorology)15. Life on landEcología. Medio ambienteRadiative transfer modeling020801 environmental engineering13. Climate actionGround-penetrating radarEnvironmental scienceSatelliteSpatial variabilitySentinel-2Scale (map)Remote Sensing of Environment
researchProduct

Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations

2021

Abstract Estimation of Green Area Index (GAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from decametric satellites was investigated in this study using a large database of ground measurements over croplands. It covers six main crop types including rice, corn, wheat and barley, sunflower, soybean and other types of crops. Ground measurements were completed using either digital hemispherical cameras, LAI-2000 or AccuPAR devices over sites representative of a decametric pixel. Sites were spread over the globe and the data collected at several growth stages concurrently to the acquisition of Landsat-8 images. Several machine learning techniques were investigated to re…

010504 meteorology & atmospheric sciencesMean squared errorArtificial neural networkCalibration (statistics)0208 environmental biotechnologyEmpirical modellingSoil ScienceGeology02 engineering and technology01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringSupport vector machineData pointKrigingComputers in Earth SciencesAlgorithm0105 earth and related environmental sciencesRemote sensingMathematicsRemote Sensing of Environment
researchProduct